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Two Simple Residual Boundsfor the Eigenvalues ofHermitian MatricesG. W. StewartLet A be a Hermitian matrix with eigenvalues �1 � � � � � �n. If X is a matrixwith orthonormal columns that spans an invariant subspace of A andM = XHAX; (1)then AX �XM = 0.Now suppose that the columns of X span an approximate invariant subspaceof A. Then the matrix R = AX �XMwill be small, say in the spectral norm k � k de�ned by kRk = maxkxk=1 kRxk,where kxk is the Euclidean norm of x.1 If the eigenvalues of M are �1 � � � � � �k,then we should expect the �i to be near k of the �i. The problem treated in thisnote is to derive a bound in terms of the matrix R.An important result, due to Kahan [3] (see also [6, p.219]) states that thereare eigenvalues �j1 ; : : : ; �jk of A such thatj�i � �ji j � kRk; i = 1; : : : ; k: (2)If nothing further is known about the spectrum of A, this bound is generallysatisfactory, although it can be improved somewhat [5]. However, it frequentlyhappens (e.g., in the Lanczos algorithm or simultaneous iteration [6, Ch.13-14])that we know that n � k of the eigenvalues of A are well separated from theeigenvalues of M : speci�cally, if we know thatthere is a number � > 0 such that exactlyn�k of the eigenvalues of A lie outside theinterval [�k � �; �1 + �], (3)then the bound in (2) can be replaced by a bound of order kRk2. Bounds of thekind have been given by Temple, Kato, and Lehman (see [6, Ch.10] and [1, x6.5]).1In fact, the choice (1) ofM minimizes kRk, although we will not make use of this fact here.1



2 Residual BoundsEarly bounds of this kind, dealt only with a single eigenvalue and eigenvector.Lehman's bounds are in some sense optimal, but are quite complicated.The purpose of this note is to give two other bounds derived from bounds onthe accuracy of the column space of X as an invariant subspace of A. They arevery simple to state and yet are asymptotically sharp. In addition they can beestablished by appealing to results readily available in the literature.Theorem 1. With the above de�nitions, assume that A and M satisfy (3). If� � kRk� < 1;then there is an index j such that �j ; : : : ; �j+k�1 2 (�k � �; �1 + �) andj�i � �j+i�1j � 11 � �2 kRk2� ; i = 1; : : : ; k:Proof. Let (X Y ) be unitary. Then0@ XHY H 1AA(X Y ) = 0@ M SHS N 1Awhere kSk = kRk. By the \sin�" theorem of Davis and Kahan [2] there is amatrix P satisfying kP (I + PHP ) 12k � �: (4)such that the columns of X̂ = (X + Y P )(I + PHP )� 12(which are are orthonormal) span an invariant subspace of A. From (4) it followsthat kPkq1 + kPk2 � �;and since � < 1 kPk � �p1 � �2 : (5)Let Ŷ = (Y �XPH)(I + PPH)� 12 . Then (X̂ Ŷ ) is unitary. Since the columnsof X̂ span an invariant subspace of A, we have Ŷ HAX̂ = 0. Hence0@ X̂HŶ H 1AA(X̂ Ŷ ) = 0@ M̂ 00 N̂ 1A :



Residual Bounds 3In [7] it is shown thatM̂ = (I + PHP ) 12 (M + SHP )(I + PHP )� 12 :The eigenvalues of M̂ are eigenvalues of A. Since � < 1 it follows from (2),they lie in the interval (�k � �; �1 + �), and hence are �j ; : : : ; �j+k�1 for someindex j. By a result of Kahan [4] on non-Hermitian perturbations of Hermitianmatrices,j�i � �j+i�1j � k(I + PHP ) 12kk(I + PHP )� 12kkSkkPk; i = 1; : : : ; k:The theorem now follows on noting that k(I + PHP )� 12 k � 1 and inserting thebound (5) for kPk.Two remarks. First, the theorem extends to operators in Hilbert space, pro-vided X (now itself an operator) has a �nite dimensional domain. Second, thebound is asymptotically sharp, as may be seen by letting X = (1 0)T andA = 0@ 0 �� 1 1A(the eigenvalues of A are asymptotic to �2 and 1 � �2).The requirement (3) unfortunately does not allow the eigenvalues of M to bescattered through the spectrum of A. If we pass to the Frobenius norm de�nedby kXk2F = trace(XHX), then we can obtain a Ho�man-Wielandt type residualbound. Speci�cally, if� = minfj�i � �j j : �i 2 �(A); �j 2 �(M)g > 0; (6)then a variant of the sin� theorem shows that there is a matrix P satisfyingkP (I + PHP ) 12k � kP (I + PHP ) 12kF � kRkF�such that the columns of X̂ = (X + Y P )(I + PHP )� 12span an invariant subspace of A. By a variant of Kahan's theorem due to Sun[9, 8], the eigenvalues �j1 ; : : : ; �jk of M̂ may be ordered so thatvuut kXi=1(�i � �ji)2 � k(I + PHP ) 12 kk(I + PHP )� 12 kkSkFkPk:Hence we have the following theorem.



4 Residual BoundsTheorem 2. With the above de�nitions, assume that A and M satisfy (6). If�F � kRkF� < 1;then there are eigenvalues �j1 ; : : : ; �jk of A such thatvuut kXi=1(�i � �ji)2 � 11 � �2F kRk2F� :References[1] F. Chatelin (1983). Spectral Approximation of Linear Operators. AcademicPress, New York.[2] C. Davis and W. M. Kahan (1970). \The Rotation of Eigenvectors by aPerturbation. III." SIAM Journal on Numerical Analysis, 7, 1{46.[3] W. Kahan (1967). \Inclusion Theorems for Clusters of Eigenvalues of Hermi-tian Matrices." Technical report, Computer Science Department, Universityof Toronto.[4] W. Kahan (1975). \Spectra of Nearly Hermitian Matrices." Proceedings of theAmerican Mathematical Society, 48, 11{17.[5] N. J. Lehmann (1963). \Optimale Eigenwerteinschiessungen." NumerischeMathematik, 5, 246{272.[6] B. N. Parlett (1980). The Symmetric Eigenvalue Problem. Prentice-Hall,Englewood Cli�s, New Jersey.[7] G. W. Stewart (1971). \Error Bounds for Approximate Invariant Subspaces ofClosed Linear Operators." SIAM Journal on Numerical Analysis, 8, 796{808.[8] G. W. Stewart and Ji guang Sun (1990). Matrix Perturbation Theory. Aca-demic Press, Boston. In production.[9] J.-G. Sun (1984). \On the Perturbation of the Eigenvalues of a Normal Ma-trix." Math. Numer. Sinca, 6, 334{336.


